Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612472

RESUMO

Birinapant, an antagonist of the inhibitor of apoptosis proteins, upregulates MHCs in tumor cells and displays a better tumoricidal effect when used in combination with immune checkpoint inhibitors, indicating that Birinapant may affect the antigen presentation pathway; however, the mechanism remains elusive. Based on high-resolution mass spectrometry and in vitro and in vivo models, we adopted integrated genomics, proteomics, and immunopeptidomics strategies to study the mechanism underlying the regulation of tumor immunity by Birinapant from the perspective of antigen presentation. Firstly, in HT29 and MCF7 cells, Birinapant increased the number and abundance of immunopeptides and source proteins. Secondly, a greater number of cancer/testis antigen peptides with increased abundance and more neoantigens were identified following Birinapant treatment. Moreover, we demonstrate the existence and immunogenicity of a neoantigen derived from insertion/deletion mutation. Thirdly, in HT29 cell-derived xenograft models, Birinapant administration also reshaped the immunopeptidome, and the tumor exhibited better immunogenicity. These data suggest that Birinapant can reshape the tumor immunopeptidome with respect to quality and quantity, which improves the presentation of CTA peptides and neoantigens, thus enhancing the immunogenicity of tumor cells. Such changes may be vital to the effectiveness of combination therapy, which can be further transferred to the clinic or aid in the development of new immunotherapeutic strategies to improve the anti-tumor immune response.


Assuntos
Apresentação de Antígeno , Dipeptídeos , Indóis , Masculino , Animais , Humanos , Terapia Combinada , Modelos Animais de Doenças
2.
Theranostics ; 14(2): 662-680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169511

RESUMO

Rationale: Cancer local recurrence increases the mortality of patients, and might be caused by field cancerization, a pre-malignant alteration of normal epithelial cells. It has been suggested that cancer-derived small extracellular vesicles (CDEs) may contribute to field cancerization, but the underlying mechanisms remain poorly understood. In this study, we aim to identify the key regulatory factors within recipient cells under the instigation of CDEs. Methods: In vitro experiments were performed to demonstrate that CDEs promote the expression of CREPT in normal epithelial cells. TMT-based quantitative mass spectrometry was employed to investigate the proteomic differences between normal cells and tumor cells. Loss-of-function approaches by CRISPR-Cas9 system were used to assess the role of CREPT in CDEs-induced field cancerization. RNA-seq was performed to explore the genes regulated by CREPT during field cancerization. Results: CDEs promote field cancerization by inducing the expression of CREPT in non-malignant epithelial cells through activating the ERK signaling pathway. Intriguingly, CDEs failed to induce field cancerization when CREPT was deleted, highlighting the importance of CREPT. Transcriptomic analyses revealed that CDEs elicited inflammatory responses, primarily through activation of the TNF signaling pathway. CREPT, in turn, regulates the transduction of downstream signals of TNF by modulating the expression of TNFR2 and PI3K, thereby promoting inflammation-to-cancer transition. Conclusion: CREPT not only serves as a biomarker for field cancerization, but also emerges as a target for preventing the cancer local recurrence.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Linhagem Celular Tumoral , Proteômica , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Proteínas de Neoplasias/genética , Vesículas Extracelulares/metabolismo , Neoplasias/genética
3.
Mol Cell Proteomics ; 23(1): 100691, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072118

RESUMO

T cells play the most pivotal roles in antitumor immunity; the T-cell proteome and the differentially expressed proteins in the tumor immune microenvironment have rarely been identified directly from the clinical samples, especially for tumors that lack effective immunotherapy targets, such as colorectal cancer (CRC). In this study, we analyzed the protein expression pattern of the infiltrating T cells isolated from CRC patients using quantitative proteomics. CD4+ and CD8+ T cells were isolated from clinical samples and labeled by tandem mass tag reagents, and the differentially expressed proteins were quantified by mass spectrometry. The T-cell proteome profiling revealed dysfunctions in these tumor-infiltrating T cells. Specifically, antitumor immunity was suppressed because of differentially expressed metal ion transporters and immunity regulators. For the first time, lipocalin-2 (LCN2) was shown to be significantly upregulated in CD4+ T cells. Quantitative proteomic analysis of LCN2-overexpressed Jurkat cells showed that LCN2 damaged T cells by changes in iron transport. LCN2 induced T-cell apoptosis by reducing cellular iron concentration; moreover, the iron that was transported to the tumor microenvironment aided tumor cell proliferation, promoting tumor development. Meanwhile, LCN2 also influenced tumor progression through immune cytokines and cholesterol metabolism. Our results demonstrated that LCN2 has immunosuppressive functions that can promote tumor development; therefore, it is a potential immunotherapy target for CRC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Apoptose , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Ferro/metabolismo , Lipocalina-2/metabolismo , Proteoma/metabolismo , Proteômica , Microambiente Tumoral
4.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958984

RESUMO

Metastasis leads to a high mortality rate in colorectal cancer (CRC). Increased neutrophil extracellular traps (NETs) formation is one of the main causes of metastasis. However, the mechanism of NETs-mediated metastasis remains unclear and effective treatments are lacking. In this study, we found neutrophils from CRC patients have enhanced NETs formation capacity and increased NETs positively correlate with CRC progression. By quantitative proteomic analysis of clinical samples and cell lines, we found that decreased secreted protein acidic and rich in cysteine (SPARC) results in massive NETs formation and integrin α5ß1 is the hub protein of NETs-tumor cell interaction. Mechanistically, SPARC regulates the activation of the nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) pathway by interacting with the receptor for activated C kinase 1 (RACK1). Over-activated NADPH oxidase generates more reactive oxygen species (ROS), leading to the release of NETs. Then, NETs upregulate the expression of integrin α5ß1 in tumor cells, which enhances adhesion and activates the downstream signaling pathways to promote proliferation and migration. The combination of NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) and integrin α5ß1 inhibitor ATN-161 (Ac-PHSCN-NH2) effectively suppresses tumor progression in vivo. Our work reveals the mechanistic link between NETs and tumor progression and suggests a combination therapy against NETs-mediated metastasis for CRC.


Assuntos
Neoplasias Colorretais , Armadilhas Extracelulares , Humanos , Armadilhas Extracelulares/metabolismo , NADPH Oxidases/metabolismo , Integrina alfa5beta1/metabolismo , Osteonectina/metabolismo , Proteômica , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Colorretais/patologia
5.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815873

RESUMO

Many cancers harbor homologous recombination defects (HRDs). A HRD is a therapeutic target that is being successfully utilized in treatment of breast/ovarian cancer via synthetic lethality. However, canonical HRD caused by BRCAness mutations do not prevail in liver cancer. Here we report a subtype of HRD caused by the perturbation of a proteasome variant (CDW19S) in hepatitis B virus-bearing (HBV-bearing) cells. This amalgamate protein complex contained the 19S proteasome decorated with CRL4WDR70 ubiquitin ligase, and assembled at broken chromatin in a PSMD4Rpn10- and ATM-MDC1-RNF8-dependent manner. CDW19S promoted DNA end processing via segregated modules that promote nuclease activities of MRE11 and EXO1. Contrarily, a proteasomal component, ADRM1Rpn13, inhibited resection and was removed by CRL4WDR70-catalyzed ubiquitination upon commitment of extensive resection. HBx interfered with ADRM1Rpn13 degradation, leading to the imposition of ADRM1Rpn13-dependent resection barrier and consequent viral HRD subtype distinguishable from that caused by BRCA1 defect. Finally, we demonstrated that viral HRD in HBV-associated hepatocellular carcinoma can be exploited to restrict tumor progression. Our work clarifies the underlying mechanism of a virus-induced HRD subtype.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Neoplasias Hepáticas/genética , Transativadores/genética , Transativadores/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/genética , Hepatite B/genética , Recombinação Homóloga , Peptídeos e Proteínas de Sinalização Intracelular/genética
6.
Cell Death Differ ; 30(3): 766-778, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329235

RESUMO

Beige adipocytes in mammalian white adipose tissue (WAT) can reinforce fat catabolism and energy expenditure. Promoting beige adipocyte biogenesis is a tantalizing tactic for combating obesity and its associated metabolic disorders. Here, we report that a previously unidentified phosphorylation pattern (Thr166) in the DNA-binding domain of PPARγ regulates the inducibility of beige adipocytes. This unique posttranslational modification (PTM) pattern influences allosteric communication between PPARγ and DNA or coactivators, which impedes the PPARγ-mediated transactivation of beige cell-related gene expression in WAT. The genetic mutation mimicking T166 phosphorylation (p-T166) hinders the inducibility of beige adipocytes. In contrast, genetic or chemical intervention in this PTM pattern favors beige cell formation. Moreover, inhibition of p-T166 attenuates metabolic dysfunction in obese mice. Our results uncover a mechanism involved in beige cell fate determination. Moreover, our discoveries provide a promising strategy for guiding the development of novel PPARγ agonists for the treatment of obesity and related metabolic disorders.


Assuntos
Adipócitos Bege , Animais , Camundongos , Adipócitos Bege/metabolismo , Fosforilação , PPAR gama/metabolismo , Obesidade/genética , Tecido Adiposo Branco/metabolismo , Mamíferos/metabolismo
7.
Cell Rep ; 40(3): 111116, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858573

RESUMO

p62, a well-known adaptor of autophagy, plays multiple functions in response to various stresses. Here, we report a function for p62 in base excision repair that is distinct from its known functions. Loss of p62 impairs base excision repair capacity and increases the sensitivity of cancer cells to alkylating and oxidizing agents. In response to alkylative and oxidative damage, p62 is accumulated in the nucleus,acetylated by hMOF,and deacetylated by SIRT7, and acetylated p62 is recruited to chromatin. The chromatin-enriched p62 directly interacts with APE1, a key enzyme of the BER pathway, and promotes its endonuclease activity, which facilitates BER and cell survival. Collectively, our findings demonstrate that p62 is a regulator of BER and provide further rationale for targeting p62 as a cancer therapeutic strategy.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Acetilação , Sobrevivência Celular , Cromatina , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo
8.
J Org Chem ; 87(4): 1986-1995, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-34280307

RESUMO

Foslevodopa (FLD, levodopa 4'-monophosphate, 3) and foscarbidopa (FCD, carbidopa 4'-monophosphate, 4) were identified as water-soluble prodrugs of levodopa (LD, 1) and carbidopa (CD, 2), respectively, which are useful for the treatment of Parkinson's disease. Herein, we describe asymmetric syntheses of FLD (3) and FCD (4) drug substances and their manufacture at pilot scale. The synthesis of FLD (3) employs a Horner-Wadsworth-Emmons olefination reaction followed by enantioselective hydrogenation of the double bond as key steps to introduce the α-amino acid moiety with the desired stereochemistry. The synthesis of FCD (4) features a Mizoroki-Heck reaction followed by enantioselective hydrazination to install the quaternary chiral center bearing a hydrazine moiety.


Assuntos
Doença de Parkinson , Preparações Farmacêuticas , Carbidopa , Humanos , Hidrogenação , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico
9.
Chem Sci ; 12(29): 10076-10082, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34349971

RESUMO

A novel and practical desymmetrization tactic is described to access a new class of pibrentasvir prodrugs. The homotopic benzimidazoles of pibrentasvir (PIB) are differentiated via a one-pot di-Boc/mono-de-Boc selective N-Boc protection and formaldehyde adduct formation sequence, both enabled by crystallization-induced selectivity. The first step represents the only known application of the Horeau principle of statistical amplification for C 2-symmetric polyheterocycle regioselective functionalization. The resulting versatile intermediate is employed in the high-yielding preparation of several pibrentasvir prodrug candidates.

10.
Mol Cell Proteomics ; 20: 100121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34265469

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Patients with TNBC have poor overall survival because of limited molecular therapeutic targets. Recently, exosomes have been recognized as key mediators in cancer progression, but the molecular components and function of TNBC-derived exosomes remain unknown. The main goal of this study was to reveal the proteomic landscape of serum exosomes derived from ten patients with TNBC and 17 healthy donors to identify potential therapeutic targets. Using a tandem mass tag-based quantitative proteomics approach, we characterized the proteomes of individual patient-derived serum exosomes, identified exosomal protein signatures specific to patients with TNBC, and filtered out differentially expressed proteins. Most importantly, we found that the tetraspanin CD151 expression levels in TNBC-derived serum exosomes were significantly higher than those exosomes from healthy subjects, and we validated our findings with samples from 16 additional donors. Furthermore, utilizing quantitative proteomics approach to reveal the proteomes of CD151-deleted exosomes and cells, we found that exosomal CD151 facilitated secretion of ribosomal proteins via exosomes while inhibiting exosome secretion of complement proteins. Moreover, we proved that CD151-deleted exosomes significantly decreased the migration and invasion of TNBC cells. This is the first comparative study of the proteomes of TNBC patient-derived and CD151-deleted exosomes. Our findings indicate that profiling of TNBC-derived exosomal proteins is a useful tool to extend our understanding of TNBC, and exosomal CD151 may be a potential therapeutic target for TNBC.


Assuntos
Exossomos/metabolismo , Proteoma/metabolismo , Tetraspanina 24/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Humanos , Pessoa de Meia-Idade , Mapas de Interação de Proteínas , Tetraspanina 24/genética , Neoplasias de Mama Triplo Negativas/sangue
11.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34108240

RESUMO

DNA replication is dramatically slowed down under replication stress. The regulation of replication speed is a conserved response in eukaryotes and, in fission yeast, requires the checkpoint kinases Rad3ATR and Cds1Chk2 However, the underlying mechanism of this checkpoint regulation remains unresolved. Here, we report that the Rad3ATR-Cds1Chk2 checkpoint directly targets the Cdc45-MCM-GINS (CMG) replicative helicase under replication stress. When replication forks stall, the Cds1Chk2 kinase directly phosphorylates Cdc45 on the S275, S322, and S397 residues, which significantly reduces CMG helicase activity. Furthermore, in cds1Chk2 -mutated cells, the CMG helicase and DNA polymerases are physically separated, potentially disrupting replisomes and collapsing replication forks. This study demonstrates that the intra-S phase checkpoint directly regulates replication elongation, reduces CMG helicase processivity, prevents CMG helicase delinking from DNA polymerases, and therefore helps preserve the integrity of stalled replisomes and replication forks.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , Complexos Multienzimáticos , Pontos de Checagem da Fase S do Ciclo Celular , Schizosaccharomyces/metabolismo , Alelos , DNA Helicases/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , Hidroxiureia/farmacologia , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Complexos Multiproteicos/metabolismo , Mutação/genética , Fosforilação/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Schizosaccharomyces/efeitos dos fármacos , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
J Chem Inf Model ; 61(3): 1412-1426, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33661005

RESUMO

Drug design with patient centricity for ease of administration and pill burden requires robust understanding of the impact of chemical modifications on relevant physicochemical properties early in lead optimization. To this end, we have developed a physics-based ensemble approach to predict aqueous thermodynamic crystalline solubility, with a 2D chemical structure as the input. Predictions for the bromodomain and extraterminal domain (BET) inhibitor series show very close match (0.5 log unit) with measured thermodynamic solubility for cases with low crystal anisotropy and good match (1 log unit) for high anisotropy structures. The importance of thermodynamic solubility is clearly demonstrated by up to a 4 log unit drop in solubility compared to kinetic (amorphous) solubility in some cases and implications thereof, for instance on human dose. We have also demonstrated that incorporating predicted crystal structures in thermodynamic solubility prediction is necessary to differentiate (up to 4 log unit) between solubility of molecules within the series. Finally, our physics-based ensemble approach provides valuable structural insights into the origins of 3-D conformational landscapes, crystal polymorphism, and anisotropy that can be leveraged for both drug design and development.


Assuntos
Física , Água , Humanos , Conformação Molecular , Solubilidade , Termodinâmica
13.
Mol Cancer Ther ; 20(6): 999-1008, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785651

RESUMO

Since gaining approval for the treatment of chronic lymphocytic leukemia (CLL), the BCL-2 inhibitor venetoclax has transformed the treatment of this and other blood-related cancers. Reflecting the large and hydrophobic BH3-binding groove within BCL-2, venetoclax has significantly higher molecular weight and lipophilicity than most orally administered drugs, along with negligible water solubility. Although a technology-enabled formulation successfully achieves oral absorption in humans, venetoclax tablets have limited drug loading and therefore can present a substantial pill burden for patients in high-dose indications. We therefore generated a phosphate prodrug (3, ABBV-167) that confers significantly increased water solubility to venetoclax and, upon oral administration to healthy volunteers either as a solution or high drug-load immediate release tablet, extensively converts to the parent drug. Additionally, ABBV-167 demonstrated a lower food effect with respect to venetoclax tablets. These data indicate that beyond-rule-of-5 molecules can be successfully delivered to humans via a solubility-enhancing prodrug moiety to afford robust exposures of the parent drug following oral dosing.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Pró-Fármacos/uso terapêutico , Sulfonamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Estudos Cross-Over , Feminino , Voluntários Saudáveis , Humanos , Pró-Fármacos/farmacologia , Sulfonamidas/farmacologia
14.
Cell ; 184(5): 1314-1329.e10, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626331

RESUMO

End resection in homologous recombination (HR) and HR-mediated repair of DNA double-strand breaks (DSBs) removes several kilobases from 5' strands of DSBs, but 3' strands are exempted from degradation. The mechanism by which the 3' overhangs are protected has not been determined. Here, we established that the protection of 3' overhangs is achieved through the transient formation of RNA-DNA hybrids. The DNA strand in the hybrids is the 3' ssDNA overhang, while the RNA strand is newly synthesized. RNA polymerase III (RNAPIII) is responsible for synthesizing the RNA strand. Furthermore, RNAPIII is actively recruited to DSBs by the MRN complex. CtIP and MRN nuclease activity is required for initiating the RNAPIII-mediated RNA synthesis at DSBs. A reduced level of RNAPIII suppressed HR, and genetic loss > 30 bp increased at DSBs. Thus, RNAPIII is an essential HR factor, and the RNA-DNA hybrid is an essential repair intermediate for protecting the 3' overhangs in DSB repair.


Assuntos
RNA Polimerase III/metabolismo , Reparo de DNA por Recombinação , Ciclo Celular , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/genética , Células HEK293 , Humanos , Proteína Homóloga a MRE11/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Hibridização de Ácido Nucleico , RNA/química
15.
Nephrol Dial Transplant ; 36(5): 782-792, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33351144

RESUMO

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is characterized by predominant IgA deposition in the glomerular mesangium. Previous studies have proved that renal-deposited IgA in IgAN came from circulating IgA1-containing complexes (CICs). METHODS: To explore the composition of CICs in IgAN, we isolated CICs from IgAN patients and healthy controls and then quantitatively analyzed them by mass spectrometry. Meanwhile, the isolated CICs were used to treat human mesangial cells to monitor mesangial cell injury. Using the protein content and injury effects, the key constituent in CICs was identified. Then the circulating levels of identified key constituent-IgA complex were detected in an independent population by an in-house-developed enzyme-linked immunosorbent assay. RESULTS: By comparing the proteins of CICs between IgAN patients and controls, we found that 14 proteins showed significantly different levels. Among them, α1-microglobulin content in CICs was associated with not only in vitro mesangial cell proliferation and monocyte chemoattractant protein 1 secretion, but also in vivo estimated glomerular filtration rate (eGFR) levels and tubulointerstitial lesions in IgAN patients. Moreover, we found α1-microglobulin was prone to bind aberrant glycosylated IgA1. Additionally, elevated circulating IgA-α1-microglobulin complex levels were detected in an independent IgAN population and IgA-α1-microglobulin complex levels were correlated with hypertension, eGFR levels and Oxford T- scores in these IgAN patients. CONCLUSIONS: Our results suggest that the IgA-α1-microglobulin complex is an important constituent in CICs and that circulating IgA-α1-microglobulin complex detection might serve as a potential noninvasive biomarker detection method for IgAN.


Assuntos
Espectrometria de Massas , Adulto , alfa-Globulinas , Biomarcadores/metabolismo , Ensaio de Imunoadsorção Enzimática , Mesângio Glomerular/patologia , Glomerulonefrite por IGA/patologia , Glicosilação , Humanos , Imunoglobulina A , Rim/patologia , Masculino , Células Mesangiais/metabolismo
16.
Adv Sci (Weinh) ; 7(22): 2001417, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33240752

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, in which the higher frequency of cancer stem cells (CSCs) correlates with the poor clinical outcome. An aberrant activation of CDK5 is found to associate with TNBC progression closely. CDK5 mediates PPARγ phosphorylation at its Ser 273, which induces CD44 isoform switching from CD44s to CD44v, resulting in an increase of stemness of TNBC cells. Blocking CDK5/pho-PPARγ significantly reduces CD44v+ BCSCs population in tumor tissues, thus abrogating metastatic progression in TNBC mouse model. Strikingly, diminishing stemness transformation reverses immunosuppressive microenvironment and enhances anti-PD-1 therapeutic efficacy on TNBC. Mechanistically, CDK5 switches the E3 ubiquitin ligase activity of PPARγ and directly protects ESRP1 from a ubiquitin-dependent proteolysis. This finding firstly indicates that CDK5 blockade can be a potent strategy to diminish stemness transformation and increase the response to PD-1 blockade in TNBC therapy.

17.
Nat Cell Biol ; 21(10): 1273-1285, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548606

RESUMO

Chromosome translocation is a major cause of the onset and progression of diverse types of cancers. However, the mechanisms underlying this process remain poorly understood. Here, we identified a non-homologous end-joining protein, IFFO1, which structurally forms a heterotetramer with XRCC4. IFFO1 is recruited to the sites of DNA damage by XRCC4 and promotes the repair of DNA double-strand breaks in a parallel pathway with XLF. Interestingly, IFFO1 interacts with lamin A/C, forming an interior nucleoskeleton. Inactivating IFFO1 or its interaction with XRCC4 or lamin A/C leads to increases in both the mobility of broken ends and the frequency of chromosome translocation. Importantly, the destruction of this nucleoskeleton accounts for the elevated frequency of chromosome translocation in many types of cancer cells. Our results reveal that the lamin A/C-IFFO1-constituted nucleoskeleton prevents chromosome translocation by immobilizing broken DNA ends during tumorigenesis.


Assuntos
Carcinogênese/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Lamina Tipo A/metabolismo , Translocação Genética , Animais , Carcinoma/genética , Cromossomos Humanos , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Proteínas de Filamentos Intermediários/genética , Camundongos , Matriz Nuclear/metabolismo , Proteínas Associadas à Matriz Nuclear/química , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Associadas à Matriz Nuclear/fisiologia
18.
Proc Natl Acad Sci U S A ; 116(29): 14563-14572, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31262821

RESUMO

DNA replication forks in eukaryotic cells stall at a variety of replication barriers. Stalling forks require strict cellular regulations to prevent fork collapse. However, the mechanism underlying these cellular regulations is poorly understood. In this study, a cellular mechanism was uncovered that regulates chromatin structures to stabilize stalling forks. When replication forks stall, H2BK33, a newly identified acetylation site, is deacetylated and H3K9 trimethylated in the nucleosomes surrounding stalling forks, which results in chromatin compaction around forks. Acetylation-mimic H2BK33Q and its deacetylase clr6-1 mutations compromise this fork stalling-induced chromatin compaction, cause physical separation of replicative helicase and DNA polymerases, and significantly increase the frequency of stalling fork collapse. Furthermore, this fork stalling-induced H2BK33 deacetylation is independent of checkpoint. In summary, these results suggest that eukaryotic cells have developed a cellular mechanism that stabilizes stalling forks by targeting nucleosomes and inducing chromatin compaction around stalling forks. This mechanism is named the "Chromsfork" control: Chromatin Compaction Stabilizes Stalling Replication Forks.


Assuntos
Replicação do DNA , Nucleossomos/metabolismo , Schizosaccharomyces/genética , Acetilação , DNA Helicases/metabolismo , Metilação de DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Código das Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Pontos de Checagem da Fase S do Ciclo Celular , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
19.
Se Pu ; 37(2): 201-206, 2019 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-30693729

RESUMO

An innovative analytical method based on high resolution sampling two-dimensional liquid chromatography (HiRes 2D-LC) was established for determination of chlorogenic acid and cynaroside in Lonicerae Japonica Flos. A C18 column was used in the first dimension (1D)-LC separation with acetonitrile and 0.4% (v/v) phosphoric acid aqueous solution as mobile phases. Five heart cuts of chlorogenic acid and four heart cuts of cynaroside were stored in 2D-LC interface, which was a 5-position-10-port valve equipped with two multiple heart-cutting valves. The stored cuts were sequentially separated in the second dimension (2D)-LC. The 2D separation was carried out on an SB-Phenyl column with acetonitrile and 0.5% (v/v) acetic acid aqueous solution as mobile phases. The results showed that chlorogenic acid peaks in the 1D were well separated, whereas cynaroside peaks in the 1D were co-eluted with interferences. The above two targets were accurately quantified through a high resolution sampling mode based on continuous slice cuts of the whole target peaks. The method had good linearity, recovery and repeatability. The HiRes 2D-LC system could be used to improve separation and quantification of (un)targets in traditional Chinese medicine samples.


Assuntos
Ácido Clorogênico/análise , Medicamentos de Ervas Chinesas/análise , Glucosídeos/análise , Lonicera/química , Luteolina/análise , Cromatografia Líquida
20.
Proc Natl Acad Sci U S A ; 115(43): E10079-E10088, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297404

RESUMO

The MRE11-RAD50-NBS1 (MRN) complex is well known for participating in DNA damage response pathways in all phases of cell cycle. Here, we show that MRN constitutes a mitosis-specific complex, named mMRN, with a protein, MMAP. MMAP directly interacts with MRE11 and is required for optimal stability of the MRN complex during mitosis. MMAP colocalizes with MRN in mitotic spindles, and MMAP-deficient cells display abnormal spindle dynamics and chromosome segregation similar to MRN-deficient cells. Mechanistically, both MMAP and MRE11 are hyperphosphorylated by the mitotic kinase, PLK1; and the phosphorylation is required for assembly of the mMRN complex. The assembled mMRN complex enables PLK1 to interact with and activate the microtubule depolymerase, KIF2A, leading to spindle turnover and chromosome segregation. Our study identifies a mitosis-specific version of the MRN complex that acts in the PLK1-KIF2A signaling cascade to regulate spindle dynamics and chromosome distribution.


Assuntos
Segregação de Cromossomos/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteína Homóloga a MRE11/metabolismo , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Fuso Acromático/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...